Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
Line 21: Line 21:
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>


* Green operators: <math> G^{r,a} = [E-H \pm i\eta]^{-1} </math>
* Green operators: <math> \hat{G}^{r,a} = [E\hat{I}-\hat{H} \pm i\eta]^{-1} </math>


===Charge density===
===Charge density===

Revision as of 14:24, 27 September 2012

Equilibrium

Expectation values

A=Tr[ρ^eqA^]

Density matrix of fermions in equilibrium

  • using spectral decomposition:

ρ^eq=αf(Eα)|EαEα|=f(H^μI^)

  • using Green functions:

ρ^eq=1πdEImGrf(E)

  • Fermi-Dirac distribution function: f(E)=1/[exp((Eμ)/kBT)+1]
  • Hamiltonian and its spectral decomposition: H^=αEα|EαEα|
  • function of Hamiltonian: F(H^)=αF(Eα)|EαEα|
  • Green operators: G^r,a=[EI^H^±iη]1

Charge density

  • charge density operator: n^(𝐫)=|𝐫𝐫|
  • expectation value: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=𝐫|ρ^eq|𝐫 (in some discrete representation these is just diagonal matrix element)

Density of states

  • definition: g(E)=αδ(EEα) (with possible normalization factors like 2s/V)
  • local density of states: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=α|Ψα(𝐫)|2f(Eα)=dE[α|Ψα(𝐫)|2δ(EEα)]f(E)=dEg(r,E)f(E)

Nonequilibrium

  • Expectation values:
  • Current operator:
  • Spin torque operator: