Key equations from quantum statistical tools: Difference between revisions
From phys824
Jump to navigationJump to search
Line 33: | Line 33: | ||
* definition of total DOS: <math> g(E) = \sum_\alpha \delta(E-E_\alpha) </math> (with possible normalization factors like <math> 2_s/V </math>) | * definition of total DOS: <math> g(E) = \sum_\alpha \delta(E-E_\alpha) </math> (with possible normalization factors like <math> 2_s/V </math>) | ||
* definition of LDOS: g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E) | * definition of LDOS: <math> g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E) </math> | ||
* LDOS using wavefunctions: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\, g(r,E) f(E) </math> | * LDOS using wavefunctions: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\, g(r,E) f(E) </math> |
Revision as of 14:26, 27 September 2012
Equilibrium
Expectation values
Density matrix of fermions in equilibrium
- using spectral decomposition:
- using Green functions:
- Fermi-Dirac distribution function:
- Hamiltonian and its spectral decomposition:
- function of Hamiltonian:
- Green operators:
Charge density
- charge density operator:
- expectation value: (in some discrete representation these is just diagonal matrix element)
Density of states
- definition of total DOS: (with possible normalization factors like )
- definition of LDOS:
- LDOS using wavefunctions:
- LDOS using
Nonequilibrium
- Expectation values:
- Current operator:
- Spin torque operator: