Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
Line 35: Line 35:
* definition of LDOS: <math> g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E) </math>
* definition of LDOS: <math> g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E) </math>


* LDOS using wavefunctions: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\,  g(r,E) f(E) </math>
* LDOS using wavefunctions: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\,  g(\mathbf{r},E) f(E) </math>


* LDOS using
* LDOS using Green functions:
 
<math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r | \mathbf{r} \rangle </math>


==Nonequilibrium==
==Nonequilibrium==

Revision as of 14:28, 27 September 2012

Equilibrium

Expectation values

Density matrix of fermions in equilibrium

  • using spectral decomposition:

  • using Green functions:

  • Fermi-Dirac distribution function:
  • Hamiltonian and its spectral decomposition:
  • function of Hamiltonian:
  • Green operators:

Charge density

  • charge density operator:
  • expectation value: (in some discrete representation these is just diagonal matrix element)

Density of states

  • definition of total DOS: (with possible normalization factors like )
  • definition of LDOS:
  • LDOS using wavefunctions:
  • LDOS using Green functions:

Nonequilibrium

  • Expectation values:
  • Current operator: