|
|
Line 35: |
Line 35: |
| * definition of LDOS: <math> g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E) </math> | | * definition of LDOS: <math> g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E) </math> |
|
| |
|
| * LDOS using wavefunctions: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\, g(r,E) f(E) </math> | | * LDOS using wavefunctions: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\, g(\mathbf{r},E) f(E) </math> |
|
| |
|
| * LDOS using | | * LDOS using Green functions: |
| | |
| | <math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r | \mathbf{r} \rangle </math> |
|
| |
|
| ==Nonequilibrium== | | ==Nonequilibrium== |
Revision as of 14:28, 27 September 2012
Equilibrium
Expectation values
Density matrix of fermions in equilibrium
- using spectral decomposition:
- Fermi-Dirac distribution function:
- Hamiltonian and its spectral decomposition:
- function of Hamiltonian:
- Green operators:
Charge density
- charge density operator:
- expectation value: (in some discrete representation these is just diagonal matrix element)
Density of states
- definition of total DOS: (with possible normalization factors like )
- definition of LDOS:
- LDOS using wavefunctions:
- LDOS using Green functions:
Nonequilibrium