|
|
Line 39: |
Line 39: |
| * LDOS using Green functions: | | * LDOS using Green functions: |
|
| |
|
| <math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r | \mathbf{r} \rangle </math> | | <math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math> |
|
| |
|
| ==Nonequilibrium== | | ==Nonequilibrium== |
Revision as of 14:28, 27 September 2012
Equilibrium
Expectation values
Density matrix of fermions in equilibrium
- using spectral decomposition:
- Fermi-Dirac distribution function:
- Hamiltonian and its spectral decomposition:
- function of Hamiltonian:
- Green operators:
Charge density
- charge density operator:
- expectation value: (in some discrete representation these is just diagonal matrix element)
Density of states
- definition of total DOS: (with possible normalization factors like )
- definition of LDOS:
- LDOS using wavefunctions:
- LDOS using Green functions:
Nonequilibrium