Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
Line 24: Line 24:


<math> \hat{G}^{r,a}(E) = [E\hat{I}-\hat{H} \pm i\eta]^{-1} </math>
<math> \hat{G}^{r,a}(E) = [E\hat{I}-\hat{H} \pm i\eta]^{-1} </math>
<math> \mathrm{Im} \hat{G}^r = (\hat{G}^{r} - \hat{G}^a)/2i </math>
<math> \mathrm{Im} \hat{G}^r = (\hat{G}^{r} - \hat{G}^a)/2i </math>



Revision as of 14:29, 27 September 2012

Equilibrium

Expectation values

A=Tr[ρ^eqA^]

Density matrix of fermions in equilibrium

  • using spectral decomposition:

ρ^eq=αf(Eα)|EαEα|=f(H^μI^)

  • using Green functions:

ρ^eq=1πdEImGrf(E)

  • Fermi-Dirac distribution function: f(E)=1/[exp((Eμ)/kBT)+1]
  • Hamiltonian and its spectral decomposition: H^=αEα|EαEα|
  • function of Hamiltonian: F(H^)=αF(Eα)|EαEα|
  • Green operators:

G^r,a(E)=[EI^H^±iη]1

ImG^r=(G^rG^a)/2i

Charge density

  • charge density operator: n^(𝐫)=|𝐫𝐫|
  • expectation value: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=𝐫|ρ^eq|𝐫 (in some discrete representation these is just diagonal matrix element)

Density of states

  • definition of total DOS: g(E)=αδ(EEα) (with possible normalization factors like 2s/V)
  • definition of LDOS: g(E)=d3𝐫g(𝐫,E)
  • LDOS using wavefunctions: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=α|Ψα(𝐫)|2f(Eα)=dE[α|Ψα(𝐫)|2δ(EEα)]f(E)=dEg(𝐫,E)f(E)
  • LDOS using Green functions:

g(𝐫,E)=1π𝐫|ImG^r(E)|𝐫

Nonequilibrium

  • Expectation values:
  • Current operator: