Subband structure of carbon nanotubes: Difference between revisions
From phys824
Jump to navigationJump to search
| Line 70: | Line 70: | ||
<pre> | <pre> | ||
from gpaw import GPAW, FermiDirac | |||
from ase import Atoms | |||
from ase.io import read, write | |||
from gpaw import GPAW, PoissonSolver, Mixer | |||
from ase.structure import nanotube | |||
# ------------------------------------------------------------- | |||
# Bulk configuration | |||
# ------------------------------------------------------------- | |||
cnt = nanotube(6, 4, length=1, bond=1.4, symbol='C') | |||
cnt.center() | |||
write('cnt.traj', cnt) | |||
# Make self-consistent calculation and save results | |||
calc = GPAW(h=0.18, | |||
mode='lcao', | |||
xc='PBE', | |||
basis='szp(dzp)', | |||
kpts=(1,1,9), | |||
occupations=FermiDirac(width=0.05, maxiter=2000), | |||
mixer=Mixer(beta=0.010, nmaxold=8, weight=100.0), | |||
poissonsolver=PoissonSolver(eps=1e-12), | |||
txt='band_sc.txt') | |||
cnt.set_calculator(calc) | |||
cnt.get_potential_energy() | |||
calc.write('band_sc.gpw') | |||
# Calculate band structure along Gamma-X | |||
from ase.dft.kpoints import ibz_points, get_bandpath | |||
G = (0, 0, 0) | |||
X = (0, 0, 0.5) | |||
kpts, x, X = get_bandpath([G, X], cnt.cell, 60) | |||
calc = GPAW('band_sc.gpw', | |||
mode='lcao', | |||
xc='PBE', | |||
basis='szp(dzp)', | |||
kpts=kpts, | |||
txt='band_harris.txt', | |||
fixdensity=True, | |||
parallel={'domain': 1}, | |||
usesymm=None, | |||
convergence={'bands': 'all'}) | |||
if calc.input_parameters['mode'] == 'lcao': | |||
calc.scf.reset() | |||
calc.get_potential_energy() | |||
calc.write('band_harris.gpw') | |||
</pre> | </pre> | ||
Revision as of 16:39, 8 November 2012
Tools
Metallic (9,0) CNT using LCAO
- cnt9-0_lcao.py:
from gpaw import GPAW, FermiDirac
from ase import Atoms
from ase.io import read, write
from gpaw import GPAW, PoissonSolver, Mixer
from ase.structure import nanotube
# -------------------------------------------------------------
# Bulk configuration
# -------------------------------------------------------------
cnt = nanotube(9, 0, length=1, bond=1.4, symbol='C')
cnt.center()
write('cnt.traj', cnt)
# Make self-consistent calculation and save results
calc = GPAW(h=0.18,
mode='lcao',
xc='PBE',
basis='szp(dzp)',
kpts=(1,1,9),
occupations=FermiDirac(width=0.05, maxiter=2000),
mixer=Mixer(beta=0.010, nmaxold=8, weight=100.0),
poissonsolver=PoissonSolver(eps=1e-12),
txt='band_sc.txt')
cnt.set_calculator(calc)
cnt.get_potential_energy()
calc.write('band_sc.gpw')
# Calculate band structure along Gamma-X
from ase.dft.kpoints import ibz_points, get_bandpath
G = (0, 0, 0)
X = (0, 0, 0.5)
kpts, x, X = get_bandpath([G, X], cnt.cell, 60)
calc = GPAW('band_sc.gpw',
mode='lcao',
xc='PBE',
basis='szp(dzp)',
kpts=kpts,
txt='band_harris.txt',
fixdensity=True,
parallel={'domain': 1},
usesymm=None,
convergence={'bands': 'all'})
if calc.input_parameters['mode'] == 'lcao':
calc.scf.reset()
calc.get_potential_energy()
calc.write('band_harris.gpw')
Semiconducting (10,0) CNT using LCAO
- cnt10-0_lcao.py:
from gpaw import GPAW, FermiDirac
from ase import Atoms
from ase.io import read, write
from gpaw import GPAW, PoissonSolver, Mixer
from ase.structure import nanotube
# -------------------------------------------------------------
# Bulk configuration
# -------------------------------------------------------------
cnt = nanotube(6, 4, length=1, bond=1.4, symbol='C')
cnt.center()
write('cnt.traj', cnt)
# Make self-consistent calculation and save results
calc = GPAW(h=0.18,
mode='lcao',
xc='PBE',
basis='szp(dzp)',
kpts=(1,1,9),
occupations=FermiDirac(width=0.05, maxiter=2000),
mixer=Mixer(beta=0.010, nmaxold=8, weight=100.0),
poissonsolver=PoissonSolver(eps=1e-12),
txt='band_sc.txt')
cnt.set_calculator(calc)
cnt.get_potential_energy()
calc.write('band_sc.gpw')
# Calculate band structure along Gamma-X
from ase.dft.kpoints import ibz_points, get_bandpath
G = (0, 0, 0)
X = (0, 0, 0.5)
kpts, x, X = get_bandpath([G, X], cnt.cell, 60)
calc = GPAW('band_sc.gpw',
mode='lcao',
xc='PBE',
basis='szp(dzp)',
kpts=kpts,
txt='band_harris.txt',
fixdensity=True,
parallel={'domain': 1},
usesymm=None,
convergence={'bands': 'all'})
if calc.input_parameters['mode'] == 'lcao':
calc.scf.reset()
calc.get_potential_energy()
calc.write('band_harris.gpw')