References: Difference between revisions
From phys824
Jump to navigationJump to search
Line 1: | Line 1: | ||
== Quantum Mechanics == | == Quantum Mechanics == | ||
* C. Cohen-Tannoudji, B. Diu, and F. Laloe: ''Quantum Mechanics'', 2 Volume Set (Wiley, Hoboken, 2006). | * C. Cohen-Tannoudji, B. Diu, and F. Laloe: ''Quantum Mechanics'', 2 Volume Set (Wiley, Hoboken, 2006). | ||
== Statistical Mechanics == | == Statistical Mechanics == |
Revision as of 21:24, 4 October 2016
Quantum Mechanics
- C. Cohen-Tannoudji, B. Diu, and F. Laloe: Quantum Mechanics, 2 Volume Set (Wiley, Hoboken, 2006).
Statistical Mechanics
- M. Kardar, Statistical Physics of Particles (Cambridge University Press, Cambridge, 2007).
Solid State Physics
- G. Grosso and G. Pastori Parravicini, Solid State Physics (Academic Press, San Diego, 2013).
- E. Canadell, M.-L. Doublet, and C. Iung, Orbital Approach to the Electronic Structure of Solids (Oxford University Press, Oxford, 2012).
Transport in semiconductor nanostructures
- C. W. J. Beenakker and H. van Houten, Quantum transport in semiconductor nanostructures, arXiv:cond-mat/0412664 [PDF]
- H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, Coulomb-blockade oscillations in semiconductor nanostructures, arXiv:cond-mat/0508454 [PDF]
- I. Knezevic, E. B. Ramayya, D. Vasileska, and S. M. Goodnick, Diffusive transport in quasi-2D and quasi-1D electron systems, Journal of Computational and Theoretical Nanoscience 6, 1725 (2009). [PDF]
Spintronics
Semiconductor spintronics
- J. Fabian, A. Matos-Abiaguea, C. Ertlera, P. Stano, and I. Žutic, Semiconductor Spintronics, Acta Physica Slovaca 57, 565 (2007) [PDF].
- B. K. Nikolic, L. P. Zarbo, and S. Souma, Spin currents in semiconductor nanostructures: A nonequilibrium Green function approach, Chapter 24 in The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Vol. I: Basic Aspects, edited by A. V. Narlikar and Y. Y. Fu. (Oxford University Press, Oxford, 2010). [PDF]
Metal spintronics
- D. C. Ralph and M. A. Stiles, Tutorial on spin transfer torque, Journal of Magnetism and Magnetic Materials 320, 1190 (2008). [PDF] (the arXiv version linked here is corrected and contains additional material compared to officially published JMMM article).
Topological Insulators
- M. Z. Hasan, C. L. Kane, COLLOQUIUM: Topological insulators, Rev.Mod.Phys. 82,3045 (2010). [PDF]
Advanced NEGF Computational Algorithms
Self-energies of semi-infinite electrodes
- J. Velev and W. Butler, On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis, J. Phys.: Condens. Matter 16, R637 (2004). [PDF]
- H. H. B. Sørensen, P. C. Hansen, D. E. Petersen and S. Skelboe, Krylov subspace method for evaluating the self-energy matrices in electron transport calculations, Phys. Rev. B 77, 155301 (2008). [PDF]
- I. Rungger and S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B 78, 035407 (2008). [PDF]
k-point sampling
- M.-H. Liu and K. Richter, Efficient quantum transport simulation for bulk graphene heterojunctions, Phys. Rev. B 86, 115455 (2012). [PDF].
Recursive algorithms
Two-terminal devices
- D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF].
- A. Lassl, P. Schlagheck, and K. Richter, Effects of short-range interactions on transport through quantum point contacts: A numerical approach, Phys. Rev. B 75, 045346 (2007). [PDF]
- P. S. Drouvelis, P. Schmelcher, and P. Bastian, Parallel implementation of the recursive Green’s function method, J. Comp. Phys. 215, 741 (2006). [PDF]
Multiterminal devices
- M. Wimmer and K. Richter, Optimal block-tridiagonalization of matrices for coherent charge transport, J. Comp. Phys. 228, 8548 (2009). [PDF]
- K. Kazymyrenko and X. Waintal, Knitting algorithm for calculating Green functions in quantum systems, Phys. Rev. B 77, 115119 (2008). [PDF]
Advanced NEGF Theory
NEGF Fundamentals
- R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.-O. Almbladh and U. von Barth, Introduction to the Keldysh Formalism, Lect. Notes Phys. 706, 33 (2006). [PDF]
- R. van Leeuwen and N. E. Dahlen, An introduction to nonequilibrium Green functions [PDF]
- G. Baym, Conservation laws and the quantum transport theory: The early days [PDF]
- A. Oguri, Transport theory for interacting electrons connected to reservoirs, cond-mat/0606316 [PDF]
- A.-P. Jauho, Modeling of inelastic effects in molecular electronics, in Progress in NEGF III [PDF]
NEGF + DFT
- D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF].
- A. Rocha, Theoretical and Computational Aspects of Electronic Transport at the Nanoscale (PhD thesis for SMEAGOL). [PDF]
- M. Koentopp, Density Functional Calculations of Nanoscale Conductance (PhD thesis). [PDF]
- M. Koentopp, C. Chang, K. Burke, and R. Car, Density functional calculations of nanoscale conductance, J. Phys.: Condens. Matter 20, 083203 (2008) (topical review). [PDF]
NEGF + GW
- K. S. Thygesen and A. Rubio, Correlated electron transport in molecular junctions, Chapter 23 in Volume I of The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Eds. A. V. Narlikar and Y. Y. Fu (Oxford University Press, Oxford, 2010). [PDF]
- C. D. Spataru, M. S. Hybertsen, S. G. Louie, and A. J. Millis, GW approach to Anderson model out of equilibrium: Coulomb blockade and false hysteresis in the I-V characteristics, Phys. Rev. B 79, 155110 (2009). [PDF]
- X. Wang, C. D. Spataru, M. S. Hybertsen, and A. J. Millis, Electronic correlation in nanoscale junctions: Comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model, Phys. Rev. B 77, 045119 (2008). [PDF]
NEGF + DMFT
- S. Okamoto, Nonlinear transport through strongly correlated two-terminal heterostructures: A dynamical mean-field approach, Phys. Rev. Lett. 101, 116807 (2008). [PDF]
- S. Okamoto, Nonequilibrium transport and optical properties of model metal–Mott-insulator–metal heterostructures, Phys. Rev. B 76, 035105 (2007) [PDF]
- A. Ishida and A. Liebsch, Embedding approach for dynamical mean-field theory of strongly correlated heterostructures, Phys. Rev. B 79, 045130 (2009). [PDF]
- D. Jacob, K. Haule, and G. Kotliar, Kondo effect and conductance of nanocontacts with magnetic impurities, Phys. Rev. Lett. 103, 016803 (2009). [PDF]