References

From phys824
Jump to navigationJump to search

Graphene

  • A. Geim, Graphene: Status and Prospects, Science 324, 1530 (2009). [PDF]
  • A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009). [PDF]
  • A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti, and S. Roche, Charge transport in disordered graphene-based low-dimensional materials, Nano Research 1, 361 (2008). [PDF]

Carbon Nanotubes

  • J.-C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79, 677 (2007). [PDF]
  • P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nature Nanotechnology 2, 605 (2007). [PDF]

Semiconductor Nanostructures

  • C. W. J. Beenakker and H. van Houten, Quantum transport in semiconductor nanostructures, arXiv:cond-mat/0412664 [PDF]
  • H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, Coulomb-blockade oscillations in semiconductor nanostructures, arXiv:cond-mat/0508454 [PDF]
  • I. Knezevic, E. B. Ramayya, D. Vasileska, and S. M. Goodnick, Diffusive transport in quasi-2D and quasi-1D electron systems, Journal of Computational and Theoretical Nanoscience 6, 1725 (2009). [PDF]

Spintronics

  • J. Fabian, A. Matos-Abiaguea, C. Ertlera, P. Stano, and I. Žutic, Semiconductor Spintronics, Acta Physica Slovaca 57, 565 (2007) [PDF].
  • B. K. Nikolic, L. P. Zarbo, and S. Souma, Spin currents in semiconductor nanostructures: A nonequilibrium Green function approach, Chapter 24 in The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Vol. I: Basic Aspects, edited by A. V. Narlikar and Y. Y. Fu. (Oxford University Press, Oxford, 2010). [PDF]

Quantum Mechanics

  • C. Cohen-Tannoudji, B. Diu, and F. Laloe: Quantum Mechanics, 2 Volume Set (Wiley, Hoboken, 2006). [Publisher Website]
  • L. E. Ballentine: Quantum Mechanics: A Modern Development (World Scientific, Singapore, 1998). [Google Books]

Statistical Mechanics

  • H. Gold and J. Tobochnik: Thermal and Statistical Physics [PDF]
  • G. Cook and R. H. Dickerson, Understanding the chemical potential, Am. J. Phys. 63, 737 (1995). [PDF]

Condensed Matter Physics

  • E. Kaxiras: Atomic and Electronic Structure of Solids (Cambridge University Press, Cambridge, 2003). [Publisher Website]

Advanced NEGF Computational Algorithms

Self-energies of semi-infinite electrodes

  • J. Velev and W. Butler, On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis, J. Phys.: Condens. Matter 16, R637 (2004). [PDF]
  • H. H. B. Sørensen, P. C. Hansen, D. E. Petersen and S. Skelboe, Krylov subspace method for evaluating the self-energy matrices in electron transport calculations, Phys. Rev. B 77, 155301 (2008). [PDF]
  • I. Rungger and S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B 78, 035407 (2008). [PDF]

Recursive algorithms

Two-terminal devices

  • D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, arXiv:0909.4568 [PDF].
  • A. Lassl, P. Schlagheck, and K. Richter, Effects of short-range interactions on transport through quantum point contacts: A numerical approach, Phys. Rev. B 75, 045346 (2007). [PDF]
  • P. S. Drouvelis, P. Schmelcher, and P. Bastian, Parallel implementation of the recursive Green’s function method, Journal of Computational Physics 215, 741 (2006). [PDF]

Multiterminal devices

  • M. Wimmer and K. Richter, Optimal block-tridiagonalization of matrices for coherent charge transport, J. Comp. Phys, 228,8548 (2009). [PDF]
  • K. Kazymyrenko and X. Waintal, Knitting algorithm for calculating Green functions in quantum systems, Phys. Rev. B 77, 115119 (2008). [PDF]

Advanced NEGF Theory

NEGF Fundamentals

  • R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.-O. Almbladh and U. von Barth, Introduction to the Keldysh Formalism, Lect. Notes Phys. 706, 33 (2006). [PDF]
  • R. van Leeuwen and N. E. Dahlen, An introduction to nonequilibrium Green functions [PDF]
  • G. Baym, Conservation laws and the quantum transport theory: The early days [PDF]
  • A. Oguri, Transport theory for interacting electrons connected to reservoirs, cond-mat/0606316 [PDF]
  • A.-P. Jauho and H. Haug, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 2008). [Google books]

NEGF + DFT

  • A. Rocha, Theoretical and Computational Aspects of Electronic Transport at the Nanoscale (PhD thesis for SMEAGOL). [PDF]
  • M. Koentopp, Density Functional Calculations of Nanoscale Conductance (PhD thesis). [PDF]
  • M. Koentopp, C. Chang, K. Burke, and R. Car, Density functional calculations of nanoscale conductance, J. Phys.: Condens. Matter 20, 083203 (2008) (topical review). [PDF]

NEGF + GW

  • K. S. Thygesen and A. Rubio, Correlated electron transport in molecular junctions, Chapter 23 in Volume I of The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Eds. A. V. Narlikar and Y. Y. Fu (Oxford University Press, Oxford, 2010). [PDF]
  • C. D. Spataru, M. S. Hybertsen, S. G. Louie, and A. J. Millis, GW approach to Anderson model out of equilibrium: Coulomb blockade and false hysteresis in the I-V characteristics, Phys. Rev. B 79, 155110 (2009). [PDF]
  • X. Wang, C. D. Spataru, M. S. Hybertsen, and A. J. Millis, Electronic correlation in nanoscale junctions: Comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model, Phys. Rev. B 77, 045119 (2008). [PDF]

NEGF + DMFT

  • S. Okamoto, Nonlinear transport through strongly correlated two-terminal heterostructures: A dynamical mean-field approach, Phys. Rev. Lett. 101, 116807 (2008). [PDF]
  • S. Okamoto, Nonequilibrium transport and optical properties of model metal–Mott-insulator–metal heterostructures, Phys. Rev. B 76, 035105 (2007) [PDF]
  • A. Ishida and A. Liebsch, Embedding approach for dynamical mean-field theory of strongly correlated heterostructures, Phys. Rev. B 79, 045130 (2009). [PDF]
  • D. Jacob, K. Haule, and G. Kotliar, Kondo effect and conductance of nanocontacts with magnetic impurities, Phys. Rev. Lett. 103, 016803 (2009). [PDF]