Subband structure of carbon nanotubes
From phys824
Jump to navigationJump to search
Tools
Metallic (7,0) CNT using LCAO
- cnt7-0_lcao.py:
from gpaw import GPAW, FermiDirac from ase import Atoms from ase.io import read, write from gpaw import GPAW, PoissonSolver, Mixer from ase.structure import nanotube # ------------------------------------------------------------- # Bulk configuration # ------------------------------------------------------------- cnt = nanotube(7, 0, length=1, bond=1.4, symbol='C') cnt.center() write('cnt.traj', cnt) # Make self-consistent calculation and save results calc = GPAW(h=0.18, mode='lcao', xc='PBE', basis='szp(dzp)', kpts=(1,1,9), occupations=FermiDirac(width=0.05, maxiter=2000), mixer=Mixer(beta=0.010, nmaxold=8, weight=100.0), poissonsolver=PoissonSolver(eps=1e-12), txt='band_sc.txt') cnt.set_calculator(calc) cnt.get_potential_energy() calc.write('band_sc.gpw') # Calculate band structure along Gamma-X from ase.dft.kpoints import ibz_points, get_bandpath G = (0, 0, 0) X = (0, 0, 0.5) kpts, x, X = get_bandpath([G, X], cnt.cell, 60) calc = GPAW('band_sc.gpw', mode='lcao', xc='PBE', basis='szp(dzp)', kpts=kpts, txt='band_harris.txt', fixdensity=True, parallel={'domain': 1}, usesymm=None, convergence={'bands': 'all'}) if calc.input_parameters['mode'] == 'lcao': calc.scf.reset() calc.get_potential_energy() ef = calc.get_fermi_level() calc.write('band_harris.gpw') calc = GPAW('band_harris', txt=None) import numpy as np eps_skn = np.array([[calc.get_eigenvalues(k,s) for k in range(60)] for s in range(1)]) - ef # Write the results to a file e.g. for plotting with gnuplot f = open('bands.dat', 'w') for n in range(66): for k in range(60): print >>f, k, eps_skn[0, k, n] print >>f
Semiconducting (10,0) CNT using LCAO
- cnt10-0_lcao.py:
from gpaw import GPAW, FermiDirac from ase import Atoms from ase.io import read, write from gpaw import GPAW, PoissonSolver, Mixer from ase.structure import nanotube # ------------------------------------------------------------- # Bulk configuration # ------------------------------------------------------------- cnt = nanotube(10, 0, length=1, bond=1.4, symbol='C') cnt.center() write('cnt.traj', cnt) # Make self-consistent calculation and save results calc = GPAW(h=0.18, mode='lcao', xc='PBE', basis='szp(dzp)', kpts=(1,1,9), occupations=FermiDirac(width=0.05, maxiter=2000), mixer=Mixer(beta=0.010, nmaxold=8, weight=100.0), poissonsolver=PoissonSolver(eps=1e-12), txt='band_sc.txt') cnt.set_calculator(calc) cnt.get_potential_energy() calc.write('band_sc.gpw') # Calculate band structure along Gamma-X from ase.dft.kpoints import ibz_points, get_bandpath G = (0, 0, 0) X = (0, 0, 0.5) kpts, x, X = get_bandpath([G, X], cnt.cell, 60) calc = GPAW('band_sc.gpw', mode='lcao', xc='PBE', basis='szp(dzp)', kpts=kpts, txt='band_harris.txt', fixdensity=True, parallel={'domain': 1}, usesymm=None, convergence={'bands': 'all'}) if calc.input_parameters['mode'] == 'lcao': calc.scf.reset() calc.get_potential_energy() calc.write('band_harris.gpw')