Electronic structure of graphene nanoribbons: Tight-binding versus density functional theory methods
The project explores recently discovered graphene nanoribbons (GNRs) by computing their electronic structure as equilibrium property using simple tight-binding method (as implemented in KWANT, PythTB or your own Matlab script) and more advanced density functional theory codes (as implemented in Quantum ESPRESSO or GPAW packages).
Subband structure of armchair GNR
Using the nearest-neighbor tight-binding Hamiltonian with single Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_z } orbital per carbon atom, compute the subband structure of three armchair GNRs whose width is Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_a=4,5, 30} . The expected result is shown in Lecture 7. Pay attention to select the proper interval of Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k_x } values as the first 1D Brillouin zone.
Subband structure of zigzag GNR
Using the nearest-neighbor (Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t_1=2.7 } eV) tight-binding Hamiltonian with single Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_z } orbital per carbon atom, compute the subband structure of three zigzag GNRs whose width is Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_z=4,5, 30} . The expected result is shown in Lecture 7. Plot the amplitude squared Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\chi(y)|^2 } across Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_z=30} ZGNR as the transverse part of a selected eigenfunction (i.e., conducting channel) whose eigenenergy is close to the Dirac point Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle E=10^{-3} t_1 } . This plot should show that probability to find electron peaks around the nanoribbons edges.
Subband structure of AGNR and ZGNR using third-nearest neighbor hoppings
Repeat subband structure calculations for Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_a=5 } AGNR and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_z=5 } ZGNR using the tight-binding Hamiltonian which includes up to third-nearest neighbour hoppings whose values are: Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t_1=2.7 } eV, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t_2 = 0.20 } eV, and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t_3 = 0.18} eV. Comment on the difference between this result and a) and b).
Subband structure of GNRs with spin-orbit coupling as topological insulator below 0.5 K
At low temperatures, the energy band gap Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \approx 0.5 K } due to intrinsic spin-orbit coupling of graphene, as well as the chiral spin-filtered edge states whose subbands pass through the gap, should become visible in experiments. This systems, termed topological insulator where time-reversal invariance ensures the crossing of the energy levels at special points in the Brillouin zone so that their energy spectrum cannot be adiabatically deformed into topologically trivial insulator without such states, can be studied using the following tight-binding model:
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{H}_{\mathrm{TI}} = - t_1 \sum_{\langle ij \rangle} \hat{c}_{i}^\dagger \hat{c}_{j} + \frac{2i}{\sqrt{3}} t_{\mathrm{SO}} \sum_{\langle \langle ij \rangle \rangle} \hat{c}_i^\dagger \hat{\mathbf{\sigma}} \cdot (\mathbf{d}_{kj} \times \mathbf{d}_{ik})\hat{c}_j } (1)
where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{c}^\dagger_i = (\hat{c}^\dagger_{i\uparrow}, \hat{c}^\dagger_{i\downarrow}) } are electron creation operators on the honeycomb lattice of GNR and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{\mathbf{\sigma}} } is the vector of the Pauli matrices. The second term in Eq. (1) introduces the intrinsic SO coupling compatible with the symmetries of the honeycomb lattice. The SO coupling acts as spin-dependent next-nearest neighbor hopping where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle i } and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle j } are two next-nearest neighbor sites, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k } is the only common nearest neighbor of Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle i } and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle j } , and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbf{d}_{ik} } is a vector pointing from Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k } to Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle i } . Compute the band structure of Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_z=30} ZGNR with SO coupling described by Hamiltonian (1) assuming Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t_1 = 2.7 } eV and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t_{\mathrm{SO}}=0.03 t_1 } . The value for Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t_{\mathrm{SO}} } is selected to be much larger than the realistic one in order to see clearly opening of the band gap Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta_{\rm SO}=6\sqrt{3} t_{\rm SO} } in your figure. Your result should look the same as Fig. 1 in Phys. Rev. Lett. 95, 226801 (2005).
Subband structure of GNRs using DFT
Using DFT code, Quantum Espresso or GPAW introduced in the Computer Lab, compute subband structure for Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_a=5 } AGNR and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_z=5 } ZGNR and comment on difference or similarities with your results in 1., 2., and 3.
References
- Main reference: A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti, and S. Roche, Charge transport in disordered graphene-based low-dimensional materials, Nano Research 1, 361 (2008). [PDF].
- Reference for GNR as 2D topological insulator: C. K. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005).