Lectures: Difference between revisions

From phys660
Jump to navigationJump to search
Line 6: Line 6:
== Lecture 2: Numerical methods for ordinary differential equations ==
== Lecture 2: Numerical methods for ordinary differential equations ==
*[[Media:numerical_ODE.pdf|PDF]]
*[[Media:numerical_ODE.pdf|PDF]]
*Example for stiff ODE in Matlab:
*[http://www.mathworks.com/moler/odes.pdf Chapter 7] in C. Moler, [http://www.mathworks.com/moler/chapters.html Numerical Computing with Matlab] (SIAM, Philadelphia, 2004).
*[http://www.mathworks.com/moler/odes.pdf Chapter 7] in C. Moler, [http://www.mathworks.com/moler/chapters.html Numerical Computing with Matlab] (SIAM, Philadelphia, 2004).
*[http://www.nrbook.com/a/bookfpdf.php Chapter 16] in W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery: [http://www.nr.com/ Numerical Recipes: The Art of Scientific Computing] (CUP, Cambridge, 2007).
*[http://www.nrbook.com/a/bookfpdf.php Chapter 16] in W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery: [http://www.nr.com/ Numerical Recipes: The Art of Scientific Computing] (CUP, Cambridge, 2007).

Revision as of 11:38, 27 February 2012

Lecture 1: Computation as a tool for discovery in physics

Lecture 2: Numerical methods for ordinary differential equations

Lecture 3: Introduction to deterministic chaos

Lecture 4: Vibrational eigenmodes: From glasses to Fermi-Pasta-Ulam Problem

  • PDF

Vibrational eigenmodes

  • P. B. Allen and J. Kelner, Evolution of a vibrational wave packet on a disordered chain, Am. J. Phys. 66, 497 (1998). [PDF]
  • J. Fabian, Decay of localized vibrational states in glasses: A one-dimensional example, Phys. Rev. B 55, R3328 (1997). [PDF]

50th Anniversary of the Fermi-Pasta-Ulam Problem

  • Focus issue of "Chaos": THE "FERMI-PASTA-ULAM" PROBLEM-THE FIRST 50 YEARS.
  • S. Flach, M. V. Ivanchenko, O. I. Kanakov, and K. G. Mishagin, Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem, Am. J. Phys. 76, 453 (2008). [PDF].
  • Fermi-Pasta-Ulam nonlinear lattice oscillations, T. Dauxois and S. Ruffo (2008), Scholarpedia, 3(8):5538.

Lecture 5: Introduction to Fourier analysis

  • PDF

Lecture 6: Random Numbers, Random Walks, Monte Carlo, and all that

  • PDF

Lecture 7: Monte Carlo Simulations in Statistical Physics

  • PDF

Lecture 8: Computational Methods for Quantum Mechanics

  • PDF

Lecture 9: Interdisciplinary Topics in Complex Systems

  • PDF