Electronic structure of graphene nanoribbons: Tight-binding versus density functional theory methods: Difference between revisions
Line 5: | Line 5: | ||
== Subband structure of zigzag GNR == | == Subband structure of zigzag GNR == | ||
Using the nearest-neighbor (<math> t_1=2.7 </math> eV) tight-binding Hamiltonian with single <math> p_z </math> orbital per carbon atom, compute the subband structure of three zigzag GNRs whose width is <math> N_z=4,5, 30</math>. The expected result is shown in [[Media:gnr_and_cnt.pdf|Lecture 7]]. Plot the amplitude squared <math> |\chi(y)|^2 </math> across <math> N_z=30</math> ZGNR as the transverse part of a selected eigenfunction (i.e., conducting channel) whose eigenergy is close to the Dirac point <math> E=10^{-3} | Using the nearest-neighbor (<math> t_1=2.7 </math> eV) tight-binding Hamiltonian with single <math> p_z </math> orbital per carbon atom, compute the subband structure of three zigzag GNRs whose width is <math> N_z=4,5, 30</math>. The expected result is shown in [[Media:gnr_and_cnt.pdf|Lecture 7]]. Plot the amplitude squared <math> |\chi(y)|^2 </math> across <math> N_z=30</math> ZGNR as the transverse part of a selected eigenfunction (i.e., conducting channel) whose eigenergy is close to the Dirac point <math> E=10^{-3} t_1 </math>. This plot should show that probability to find electron peaks around the nanoribbons edges. | ||
== Subband structure of AGNR and ZGNR using third-nearest neighbor hoppings == | == Subband structure of AGNR and ZGNR using third-nearest neighbor hoppings == |
Revision as of 15:18, 15 November 2012
The project explores recently discovered graphene nanoribbons (GNRs) by computing their electronic structure as equilibrium property using simple tight-binding method and more advanced density functional theory based on GPAW computational code.
Subband structure of armchair GNR
Using the nearest-neighbor tight-binding Hamiltonian with single orbital per carbon atom, compute the subband structure of three armchair GNRs whose width is . The expected result is shown in Lecture 7. Pay attention to select the proper interval of values as the first 1D Brillouin zone.
Subband structure of zigzag GNR
Using the nearest-neighbor ( eV) tight-binding Hamiltonian with single orbital per carbon atom, compute the subband structure of three zigzag GNRs whose width is . The expected result is shown in Lecture 7. Plot the amplitude squared across ZGNR as the transverse part of a selected eigenfunction (i.e., conducting channel) whose eigenergy is close to the Dirac point . This plot should show that probability to find electron peaks around the nanoribbons edges.
Subband structure of AGNR and ZGNR using third-nearest neighbor hoppings
Repeat subband structure calculations for AGNR and ZGNR using the tight-binding Hamiltonian which includes up to third-nearest neighbour hoppings whose values are: eV, eV, and eV. Comment on the difference between this result and a) and b).
Subband structure of GNRs as topological insulator below 0.5 K
At low temperatures, the energy band gap due to intrinsic spin-orbit coupling, as well as the chiral spin-filtered edge states whose subbands pass through the gap, should become visible in experiments. This systems, termed topological insulator where time-reversal invariance ensures the crossing of the energy levels at special points in the Brillouin zone so that their energy spectrum cannot be adiabatically deformed into topologically trivial insulator without such states, can be studied using the following tight-binding model:
(1)
where are electron creation operators and is the vector of the Pauli matrices. The third sum in Eq.~(1) introduces the intrinsic SO coupling compatible with the symmetries of the honeycomb lattice. The SO coupling acts as spin-dependent next-nearest neighbor hopping where and are two next-nearest neighbor sites, is the only common nearest neighbor of and , and is a vector pointing from to . Compute the band structure of ZGNR with SO coupling described by Hamiltonian (1) assuming eV and . The value for is selected to be much larger than the realistic one in order to see clearly opening of the band gap in your figure.
Subband structure of GNRs using DFT
Using DFT code GPAW (installed of mills), compute subband structure for AGNR and ZGNR and comment on difference or similarities with your results in 1., 2., and 3.
References
- Main reference: A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti, and S. Roche, Charge transport in disordered graphene-based low-dimensional materials, Nano Research 1, 361 (2008). [PDF].
- Reference for GNR as topological insulator: C. K. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005).