Lectures: Difference between revisions

From phys660
Jump to navigationJump to search
No edit summary
Line 28: Line 28:
*S. Flach, M. V. Ivanchenko, O. I. Kanakov, and K. G. Mishagin, ''Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem'', Am. J. Phys. '''76''', 453 (2008). [http://dx.doi.org/10.1119/1.2820396 [PDF]].
*S. Flach, M. V. Ivanchenko, O. I. Kanakov, and K. G. Mishagin, ''Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem'', Am. J. Phys. '''76''', 453 (2008). [http://dx.doi.org/10.1119/1.2820396 [PDF]].
*[http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations Fermi-Pasta-Ulam nonlinear lattice oscillations], T. Dauxois and S. Ruffo (2008), Scholarpedia, 3(8):5538.
*[http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations Fermi-Pasta-Ulam nonlinear lattice oscillations], T. Dauxois and S. Ruffo (2008), Scholarpedia, 3(8):5538.
== Lecture 5: Introduction to Fourier analysis ==
*PDF


== Lecture 6: Random Numbers, Random Walks, Monte Carlo, and all that ==
== Lecture 6: Random Numbers, Random Walks, Monte Carlo, and all that ==

Revision as of 20:31, 31 March 2012

Lecture 1: Computation as a tool for discovery in physics

Lecture 2: Numerical methods for ordinary differential equations

Lecture 3: Introduction to deterministic chaos

Lecture 4: Vibrational normal modes: From glasses to Fermi-Pasta-Ulam problem

Vibrational normal modes in disordered one-dimensional systems

  • P. B. Allen and J. Kelner, Evolution of a vibrational wave packet on a disordered chain, Am. J. Phys. 66, 497 (1998). [PDF]
  • J. Fabian, Decay of localized vibrational states in glasses: A one-dimensional example, Phys. Rev. B 55, R3328 (1997). [PDF]

50th Anniversary of the Fermi-Pasta-Ulam Problem

Lecture 6: Random Numbers, Random Walks, Monte Carlo, and all that

  • PDF

Lecture 7: Monte Carlo Simulations in Statistical Physics

  • PDF

Lecture 8: Computational Methods for Quantum Mechanics

  • PDF

Lecture 9: Interdisciplinary Topics in Complex Systems

  • PDF