Lectures: Difference between revisions

From phys813
Jump to navigationJump to search
No edit summary
Line 18: Line 18:
*Steven Weinberg, ''Quantum mechanics without state vectors'', Phys. Rev. A '''90''', 042102 (2014). [http://dx.doi.org/10.1103/PhysRevA.90.042102 [PDF]]
*Steven Weinberg, ''Quantum mechanics without state vectors'', Phys. Rev. A '''90''', 042102 (2014). [http://dx.doi.org/10.1103/PhysRevA.90.042102 [PDF]]


== Lecture 3: Master equations for open quantum systems ==
== Lecture 3: Many-particle wave function and the Hilbert space of identical particles ==
* Example: Decoherence in quantum Brownian motion.
* Example: Linblad master equation.
* Example: Bloch equation describing spin relaxation and dephasing.
=== Additional references ===
* J. K. Gamble and J. F. Lindner, ''Demystifying decoherence and the master equation of quantum Brownian motion'', Am. J. Phys. '''77''', 244 (2009). [http://dx.doi.org/10.1119/1.3043847 [PDF]]
 
== Lecture 4: Many-particle wave function and the Hilbert space of identical particles ==
* Example: Wave functions of 3 fermions and 3 bosons.
* Example: Wave functions of 3 fermions and 3 bosons.


== Lecture 5: Quantum partition function for many-particle systems in equilibrium ==
== Lecture 4: Quantum partition function for many-particle systems in equilibrium ==
* Example: Quantum partition function for two bosons and two fermions and comparison with classical statistical mechanics.
* Example: Quantum partition function for two bosons and two fermions and comparison with classical statistical mechanics.
* Example: "Effective force" between noninteracting bosons and fermions due to Pauli principle.
* Example: "Effective force" between noninteracting bosons and fermions due to Pauli principle.
* Quantum partition function for non-interacting bosons and fermions in the grand canonical ensemble.  
* Quantum partition function for non-interacting bosons and fermions in the grand canonical ensemble.  
* Example: Equation of state for non-degenerate bosons and fermions.
* Example: Equation of state for non-degenerate bosons and fermions.
=== Additional references ===  
=== Additional references ===  
* W. J. Mullin and G. Blaylock, ''Quantum statistics: Is there an effective fermion repulsion or boson attraction?'', Am. J. Phys. '''71''', 1223 (2003). [http://dx.doi.org/10.1119/1.1590658 [PDF]]
* W. J. Mullin and G. Blaylock, ''Quantum statistics: Is there an effective fermion repulsion or boson attraction?'', Am. J. Phys. '''71''', 1223 (2003). [http://dx.doi.org/10.1119/1.1590658 [PDF]]
* G. Cook and R. H. Dickerson, ''Understanding the chemical potential'', Am. J. Phys. '''63''', 737 (1995). [http://dx.doi.org/10.1119/1.17844 [PDF]]
* G. Cook and R. H. Dickerson, ''Understanding the chemical potential'', Am. J. Phys. '''63''', 737 (1995). [http://dx.doi.org/10.1119/1.17844 [PDF]]


== Lecture 6: Degenerate fermions in equilibrium ==
== Lecture 5: Degenerate fermions in equilibrium ==
*Example: Heat capacity of electrons in solids.
*Example: Heat capacity of electrons in solids.
*Example: Pauli paramagnetism.
*Example: Pauli paramagnetism.
Line 43: Line 37:
*Example: Stoner ferromagnetism.
*Example: Stoner ferromagnetism.
*Example: [[Media:stars.pdf|White dwarfs, neutron stars and black holes]].
*Example: [[Media:stars.pdf|White dwarfs, neutron stars and black holes]].
=== Additional references ===
=== Additional references ===
* R. Balian and J.-P. Blaizot, ''Stars and statistical physics: A teaching experience'', Am. J. Phys. '''67''', 1189 (1999). [http://dx.doi.org/10.1119/1.19105 [PDF]]
* R. Balian and J.-P. Blaizot, ''Stars and statistical physics: A teaching experience'', Am. J. Phys. '''67''', 1189 (1999). [http://dx.doi.org/10.1119/1.19105 [PDF]]
*[http://www.atnf.csiro.au/outreach/education/senior/astrophysics/stellarevolutiontop.html Stelar evolution: The life and death of stars]
*[http://www.atnf.csiro.au/outreach/education/senior/astrophysics/stellarevolutiontop.html Stelar evolution: The life and death of stars]


== Lecture 7: Degenerate bosons in equilibrium ==
== Lecture 6: Degenerate bosons in equilibrium ==
* Example: Bose-Einstein Condensation of free noninteracting bosons.
* Example: Bose-Einstein Condensation of free noninteracting bosons.
* Example: [[Media:bec_phys813.pdf|Bose-Einstein condensation in ultracold atomic gases]].
* Example: [[Media:bec_phys813.pdf|Bose-Einstein condensation in ultracold atomic gases]].
Line 53: Line 48:
* Example: Heat capacity of phonons in solids.
* Example: Heat capacity of phonons in solids.
* Example: Magnons in the Heisenberg model of magnetism.
* Example: Magnons in the Heisenberg model of magnetism.
===Additional references===
===Additional references===
*G. Scharf, ''On Bose–Einstein condensation'', Am. J. Phys. '''61''', 843 (1993). [http://dx.doi.org/10.1119/1.17416 [PDF]]
*G. Scharf, ''On Bose–Einstein condensation'', Am. J. Phys. '''61''', 843 (1993). [http://dx.doi.org/10.1119/1.17416 [PDF]]
Line 59: Line 55:
*E. A. Cornell and C. E. Wieman, ''Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments'', Rev. Mod. Phys. '''74''', 875 (2002). [http://rmp.aps.org/abstract/RMP/v74/i3/p875_1[PDF]]
*E. A. Cornell and C. E. Wieman, ''Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments'', Rev. Mod. Phys. '''74''', 875 (2002). [http://rmp.aps.org/abstract/RMP/v74/i3/p875_1[PDF]]


== Lecture 8: Phase transitions in magnetic systems ==
== Lecture 7: Phase transitions in magnetic systems ==
* Example: Noninteracting spins.
* Example: Noninteracting spins.
* Thermodynamics of magnetism.
* Thermodynamics of magnetism.
Line 65: Line 61:
* Example: Partition function of the Ising model in one-dimension in an external magnetic field.
* Example: Partition function of the Ising model in one-dimension in an external magnetic field.
* Example: Onsager exact analytical solution vs. Monte Carlo simulations of the Ising model in two-dimensions.
* Example: Onsager exact analytical solution vs. Monte Carlo simulations of the Ising model in two-dimensions.
===Additional references===
===Additional references===
* O. Narayan and A. P. Young, ''Free energies in the presence of electric and magnetic fields'', Am. J. Phys. '''73''', 293 (2005). [http://dx.doi.org/10.1119/1.1819934 [PDF]]
* O. Narayan and A. P. Young, ''Free energies in the presence of electric and magnetic fields'', Am. J. Phys. '''73''', 293 (2005). [http://dx.doi.org/10.1119/1.1819934 [PDF]]


== Lecture 9: Mean-field theories of phase transitions ==
== Lecture 8: Mean-field theories of phase transitions ==
* Example: Mean-field theory of the Ising model of magnetism.
* Example: Mean-field theory of the Ising model of magnetism.
* Example: Mean-field theory of the XY model of magnetism.
* Example: Mean-field theory of the XY model of magnetism.
Line 77: Line 74:
* J. Als‐Nielsen and R. J. Birgeneau, ''Mean field theory, the Ginzburg criterion, and marginal dimensionality of phase transitions'', Am. J. Phys. '''45''', 554 (1977). [http://dx.doi.org/10.1119/1.11019 [PDF]]
* J. Als‐Nielsen and R. J. Birgeneau, ''Mean field theory, the Ginzburg criterion, and marginal dimensionality of phase transitions'', Am. J. Phys. '''45''', 554 (1977). [http://dx.doi.org/10.1119/1.11019 [PDF]]


== Lecture 10: Renormalization group (RG)==
== Lecture 9: Renormalization group (RG)==
* [[Media:rg_phys813.pdf|PDF]]
* [[Media:rg_phys813.pdf|PDF]]
* Example: RG for 1D and 2D Ising model.
* Example: RG for 1D and 2D Ising model.
Line 91: Line 88:
== Lecture 11: Elements of nonequilibrium statistical physics: Boltzmann equation and Kubo formula ==
== Lecture 11: Elements of nonequilibrium statistical physics: Boltzmann equation and Kubo formula ==
* [[Media:boltzmann_kubo.pdf|PDF]]
* [[Media:boltzmann_kubo.pdf|PDF]]
===Additional references===
===Additional references===
* N. Borghini, [[Media:BOOK_BORGHINI=topics_in_nonequilibrium_physics.pdf|Topics in Nonequilibrium Physics]]
* N. Borghini, [[Media:BOOK_BORGHINI=topics_in_nonequilibrium_physics.pdf|Topics in Nonequilibrium Physics]]
== Lecture 12: Elements of nonequilibrium statistical physics: Master equations for open quantum systems ==
* Example: Decoherence in quantum Brownian motion.
* Example: Linblad master equation.
* Example: Bloch equation describing spin relaxation and dephasing.
=== Additional references ===
* J. K. Gamble and J. F. Lindner, ''Demystifying decoherence and the master equation of quantum Brownian motion'', Am. J. Phys. '''77''', 244 (2009). [http://dx.doi.org/10.1119/1.3043847 [PDF]]

Revision as of 11:51, 23 February 2018

Lecture 1: Failure of classical statistical mechanics

Additional references

Lecture 2: Density operator formalism for proper and improper mixed quantum states

  • Example: Proper mixtures in spintronics.
  • Example: Entangled quantum states, improper mixtures, and decoherence in nanostructures and quantum computers.
  • Example: The von Neumann entropy as a measure of state purity.
  • Example: Proper mixtures for quantum systems in thermal equilibrium and density operator for microcanonical, canonical, and grand canonical ensembles via correspondence with classical statistical mechanics.
  • Example: Density matrix and quantum partition function for a single particle in a box in the quantum canonical ensemble.
  • Example: Density matrix and quantum partition function for a linear harmonic oscillator in the quantum canonical ensemble.

Additional references

Lecture 3: Many-particle wave function and the Hilbert space of identical particles

  • Example: Wave functions of 3 fermions and 3 bosons.

Lecture 4: Quantum partition function for many-particle systems in equilibrium

  • Example: Quantum partition function for two bosons and two fermions and comparison with classical statistical mechanics.
  • Example: "Effective force" between noninteracting bosons and fermions due to Pauli principle.
  • Quantum partition function for non-interacting bosons and fermions in the grand canonical ensemble.
  • Example: Equation of state for non-degenerate bosons and fermions.

Additional references

  • W. J. Mullin and G. Blaylock, Quantum statistics: Is there an effective fermion repulsion or boson attraction?, Am. J. Phys. 71, 1223 (2003). [PDF]
  • G. Cook and R. H. Dickerson, Understanding the chemical potential, Am. J. Phys. 63, 737 (1995). [PDF]

Lecture 5: Degenerate fermions in equilibrium

Additional references

Lecture 6: Degenerate bosons in equilibrium

  • Example: Bose-Einstein Condensation of free noninteracting bosons.
  • Example: Bose-Einstein condensation in ultracold atomic gases.
  • Off-diagonal long-range order in the density matrix of Bose-Einstein condensates.
  • Example: Heat capacity of phonons in solids.
  • Example: Magnons in the Heisenberg model of magnetism.

Additional references

  • G. Scharf, On Bose–Einstein condensation, Am. J. Phys. 61, 843 (1993). [PDF]
  • W. J. Mullin, The loop-gas approach to Bose–Einstein condensation for trapped particles, Am. J. Phys. 68, 120 (2000). [PDF]
  • K. Burnett, M. Edwards, and C. W. Clark, The theory of Bose-Einstein condensation of diluted gases, Phys. Today 52(12), 37 (1999). [PDF]
  • E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74, 875 (2002). [PDF]

Lecture 7: Phase transitions in magnetic systems

  • Example: Noninteracting spins.
  • Thermodynamics of magnetism.
  • Abrupt vs. continuous phase transitions in ferromagnet-paramagnet systems and analogy with liquid-gas phase diagram.
  • Example: Partition function of the Ising model in one-dimension in an external magnetic field.
  • Example: Onsager exact analytical solution vs. Monte Carlo simulations of the Ising model in two-dimensions.

Additional references

  • O. Narayan and A. P. Young, Free energies in the presence of electric and magnetic fields, Am. J. Phys. 73, 293 (2005). [PDF]

Lecture 8: Mean-field theories of phase transitions

  • Example: Mean-field theory of the Ising model of magnetism.
  • Example: Mean-field theory of the XY model of magnetism.
  • Landau phenomenological formulation of mean-field theories.
  • Landau-Ginzburg mean-field theory and the Ginzburg criterion for the importance of fluctuations.

Additional references

  • J. Als‐Nielsen and R. J. Birgeneau, Mean field theory, the Ginzburg criterion, and marginal dimensionality of phase transitions, Am. J. Phys. 45, 554 (1977). [PDF]

Lecture 9: Renormalization group (RG)

  • PDF
  • Example: RG for 1D and 2D Ising model.
  • Example: RG for quantum phase transition in 1D quantum Ising model in transverse magnetic field.
  • Example: Numerical RG for 2D Ising model.

Additional references

  • K. G. Wilson, Problems in physics with many scales of length, Scientific American 241(2), 140 (1979). [PDF]
  • H. J. Maris and L. P. Kadanoff, Teaching the renormalization group, Am. J. Phys. 46, 652 (1978). [PDF]
  • M. E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70, 653 (1998). [PDF]
  • S. Sachdev and B. Keimer, Quantum criticality, Physics Today 64(2), 29 (2011). [PDF]

Lecture 11: Elements of nonequilibrium statistical physics: Boltzmann equation and Kubo formula

Additional references

Lecture 12: Elements of nonequilibrium statistical physics: Master equations for open quantum systems

  • Example: Decoherence in quantum Brownian motion.
  • Example: Linblad master equation.
  • Example: Bloch equation describing spin relaxation and dephasing.

Additional references

  • J. K. Gamble and J. F. Lindner, Demystifying decoherence and the master equation of quantum Brownian motion, Am. J. Phys. 77, 244 (2009). [PDF]