Lectures: Difference between revisions
From phys813
Jump to navigationJump to search
(75 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== Lecture 1: Failure of classical statistical mechanics == | == Lecture 1: Failure of classical statistical mechanics on black-body radiation problem == | ||
*[[Media:black_body_bkn.nb|Mathematica notebook]] | *[[Media:black_body_bkn.nb|Mathematica notebook]] | ||
===Additional references=== | ===Additional references=== | ||
*[http:// | *[http://star-www.st-and.ac.uk/~kdh1/ce/ce04.pdf Matter-radiation decoupling and the cosmic microwave background] | ||
*C. Andersen, C. A. Rosenstroem, and O. Ruchayskiy, ''How bright was the Big Bang?'', Am. J. Phys. '''87''', 395 (2019). [https://doi.org/10.1119/1.5092705 [PDF]] | *C. Andersen, C. A. Rosenstroem, and O. Ruchayskiy, ''How bright was the Big Bang?'', Am. J. Phys. '''87''', 395 (2019). [https://doi.org/10.1119/1.5092705 [PDF]] | ||
== Lecture 2: Density operator formalism for proper and improper mixed quantum states == | == Lecture 2: Density operator formalism for proper and improper mixed quantum states == | ||
*[[Media:PHYS813_lecture2_density_operator_formalism.pdf|PDF]] | |||
* Example: Proper mixtures in spintronics. | * Example: Proper mixtures in spintronics. | ||
* Example: Entangled quantum states, improper mixtures, and decoherence in nanostructures and quantum computers. | * Example: Entangled quantum states, improper mixtures, and decoherence in nanostructures and quantum computers. | ||
Line 13: | Line 14: | ||
* Example: Density matrix and quantum partition function for a single particle in a box in canonical ensemble. | * Example: Density matrix and quantum partition function for a single particle in a box in canonical ensemble. | ||
* Example: Density matrix and quantum partition function for a linear harmonic oscillator in canonical ensemble. | * Example: Density matrix and quantum partition function for a linear harmonic oscillator in canonical ensemble. | ||
===Postulates of Quantum Mechanics in a Nutshell=== | |||
<pre> | |||
1. Where things happen: HILBERT SPACE | |||
2. Combining Quantum Systems: TENSOR PRODUCT OF VECTORS, MATRICES AND OF HILBERT SPACES | |||
3. Time Evolution (Dynamics): SCHRÖDINGER EQUATION | |||
4. Information extraction: MEASUREMENTS | |||
</pre> | |||
=== Additional references === | === Additional references === | ||
* [ | * [https://catalogue.library.cern/api/files/1d9e2170-5f3f-43de-8b6a-d8d59b791e09/2.%20Back%20matter.pdf?download Overview of linear algebra, using Dirac notation, for quantum (mechanics, computing and statistical mechanics) courses] | ||
*[https://www.worldscientific.com/doi/suppl/10.1142/9038/suppl_file/9038_chap01.pdf Mathematical Prerequsites] from L. E. Ballentine, ''Quantum Mechanics: A Modern Development'' (World Scientific, Singapore, 2014). | |||
*S. Weinberg, ''Quantum mechanics without state vectors'', Phys. Rev. A '''90''', 042102 (2014). [http://dx.doi.org/10.1103/PhysRevA.90.042102 [PDF]] | *S. Weinberg, ''Quantum mechanics without state vectors'', Phys. Rev. A '''90''', 042102 (2014). [http://dx.doi.org/10.1103/PhysRevA.90.042102 [PDF]] | ||
*A. Ekert and P. L. Knight, ''Entangled quantum systems and the Schmidt decomposition'', Am. J. Phys. '''63''', 415 (1995). [http://dx.doi.org/10.1119/1.17904 [PDF]] | *A. Ekert and P. L. Knight, ''Entangled quantum systems and the Schmidt decomposition'', Am. J. Phys. '''63''', 415 (1995). [http://dx.doi.org/10.1119/1.17904 [PDF]] | ||
Line 22: | Line 35: | ||
== Lecture 3: Many-particle wave function and the Hilbert space of identical particles == | == Lecture 3: Many-particle wave function and the Hilbert space of identical particles == | ||
*[[Media:PHYS813_lecture3_identical_particles.pdf|PDF]] | |||
* Example: Wave functions of 3 fermions and 3 bosons. | * Example: Wave functions of 3 fermions and 3 bosons. | ||
* Example: Ortho vs. para hydrogen H<sub>2</sub> molecules. | |||
===Additional references=== | |||
*C. F. Roos, A. Alberti, D. Meschede, P. Hauke, and H. Häffner, ''Revealing quantum statistics with a pair of distant atoms'', Phys. Rev. Lett. '''119''', 160401 (2017). [https://doi.org/10.1103/PhysRevLett.119.160401 [PDF]] | |||
*N. Vaytet, K. Tomida, and G. Chabrier, ''On the role of the H<sub>2</sub> ortho:para ratio in gravitational collapse during star formation'', Astronomy & Astrophysics '''563''', A85 (2014). [https://www.aanda.org/articles/aa/pdf/2014/03/aa22855-13.pdf [PDF]] | |||
== Lecture 4: Quantum partition function for noninteracting many-particle systems== | == Lecture 4: Quantum partition function for noninteracting many-particle systems== | ||
*[[Media:PHYS813_lecture4_partition_function_for_many_particles.pdf|PDF]] | |||
* Example: Quantum partition function for two bosons and two fermions and comparison with classical statistical mechanics. | * Example: Quantum partition function for two bosons and two fermions and comparison with classical statistical mechanics. | ||
* Example: "Effective force" between noninteracting bosons and fermions due to Pauli principle. | * Example: "Effective force" between noninteracting bosons and fermions due to Pauli principle. | ||
Line 35: | Line 55: | ||
== Lecture 5: Degenerate fermions == | == Lecture 5: Degenerate fermions == | ||
*[[Media:PHYS813_lecture5_degenerate_fermions.pdf|PDF]] | |||
*Example: Heat capacity of electrons in solids. | *Example: Heat capacity of electrons in solids. | ||
*Example: Pauli paramagnetism. | *Example: Pauli paramagnetism. | ||
*Example: Landau diamagnetism. | *Example: Landau diamagnetism. | ||
*Example: Stoner ferromagnetism. | *Example: Stoner ferromagnetism. | ||
*Example: [[Media:stars_phys813.pdf|White dwarfs, neutron stars and black holes]]. | *Example: [[Media:stars_phys813.pdf|White dwarfs, neutron and quark stars and black holes]]. | ||
=== Additional references === | === Additional references === | ||
*[ | *[https://map.gsfc.nasa.gov/universe/rel_stars.html Stelar evolution: The life and death of stars] | ||
*[https://ras.ac.uk/news-and-press/news/swallowed-torn-or-live-how-earth-will-fare-when-sun-dies How Earth will fare when the Sun dies] | |||
* R. Balian and J.-P. Blaizot, ''Stars and statistical physics: A teaching experience'', Am. J. Phys. '''67''', 1189 (1999). [http://dx.doi.org/10.1119/1.19105 [PDF]] | * R. Balian and J.-P. Blaizot, ''Stars and statistical physics: A teaching experience'', Am. J. Phys. '''67''', 1189 (1999). [http://dx.doi.org/10.1119/1.19105 [PDF]] | ||
*R. Fantoni, ''White-dwarf equation of state and structure: the effect of temperature'', J. Stat. Mech. 113101 (2017). [https://iopscience.iop.org/article/10.1088/1742-5468/aa9339 [PDF]] | |||
*[[Media:fermi_letter_to_dirac.jpg|Fermi writes to Dirac about "their" distribution function]] and his own [https://arxiv.org/pdf/cond-mat/9912229.pdf paper] from 1926. | |||
== Lecture 6: Degenerate bosons == | == Lecture 6: Degenerate bosons == | ||
* [[Media:PHYS813_lecture6_degenerate_bosons.pdf|PDF]] | |||
* Example: Bose-Einstein Condensation of free noninteracting bosons. | * Example: Bose-Einstein Condensation of free noninteracting bosons. | ||
* Example: [[Media:bec_phys813.pdf|Bose-Einstein condensation in ultracold atomic gases]]. | * Example: [[Media:bec_phys813.pdf|Bose-Einstein condensation in ultracold atomic gases]]. | ||
* Off-diagonal long-range order in the density matrix of Bose-Einstein condensates. | * Off-diagonal long-range order in the density matrix of Bose-Einstein condensates. | ||
* Example: Heat capacity of phonons in solids. | * Example: Heat capacity of phonons in solids. | ||
===Additional references=== | ===Additional references=== | ||
Line 58: | Line 82: | ||
*E. A. Cornell and C. E. Wieman, ''Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments'', Rev. Mod. Phys. '''74''', 875 (2002). [http://rmp.aps.org/abstract/RMP/v74/i3/p875_1[PDF]] | *E. A. Cornell and C. E. Wieman, ''Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments'', Rev. Mod. Phys. '''74''', 875 (2002). [http://rmp.aps.org/abstract/RMP/v74/i3/p875_1[PDF]] | ||
== Lecture 7: Phase transitions | == Lecture 7: Phase transitions == | ||
*[[Media:PHYS813_lecture7_phase_transitions.pdf|PDF]] | |||
* Thermodynamics of magnetism. | * Thermodynamics of magnetism. | ||
* | * Exchange interaction. | ||
* Abrupt vs. continuous phase transitions in ferromagnet-paramagnet systems and analogy with liquid-gas phase diagram. | * Quantum and classical Heisenberg or Ising ferro- and anti-ferromagnetic models. | ||
* Example: | * Example: Abrupt vs. continuous phase transitions in ferromagnet-paramagnet systems and analogy with liquid-gas phase diagram. | ||
* Example: | * Example: Phase transitions in quantum fluids, quantum chromodynamics and cosmology. | ||
* Example: Monte Carlo simulations of the Ising model in two-dimensions. | |||
===Additional references=== | ===Additional references=== | ||
* O. Narayan and A. P. Young, ''Free energies in the presence of electric and magnetic fields'', Am. J. Phys. '''73''', 293 (2005). [http://dx.doi.org/10.1119/1.1819934 [PDF]] | * O. Narayan and A. P. Young, ''Free energies in the presence of electric and magnetic fields'', Am. J. Phys. '''73''', 293 (2005). [http://dx.doi.org/10.1119/1.1819934 [PDF]] | ||
* A. Mazumdar and G. White, ''Review of cosmic phase transitions: their significance and experimental signatures'', Rep. Prog. Phys. '''82''', 076901 (2019). [https://iopscience.iop.org/article/10.1088/1361-6633/ab1f55 [PDF]] | |||
* D. Vollhardt and P. Wölfle, ''Superfluid Helium 3: Link between condensed matter physics and particle physics'', [https://arxiv.org/pdf/cond-mat/0012052.pdf arXiv:cond-mat/0012052]. | |||
* M. J. Aschwanden ''et al.'', ''25 years of self-organized criticality: Solar and astrophysics'', Space Sci. Rev. '''198''', 47 (2016). [https://link.springer.com/content/pdf/10.1007/s11214-014-0054-6.pdf [PDF]] | |||
* A. Scheie, P. Laurell, A. M. Samarakoon, B. Lake, S. E. Nagler, G. E. Granroth, S. Okamoto, G. Alvarez, and D. A. Tennant, ''Witnessing entanglement in quantum magnets using neutron scattering'', Phys. Rev. B '''103''', 224434 (2021). [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.224434 [PDF]] | |||
== Lecture 8: Mean-field | == Lecture 8: Mean-field theory of phase transitions == | ||
*[[Media:PHYS813_lecture8_mean_field_theory.pdf|PDF]] | |||
* Example: Mean-field theory of the Ising model of magnetism. | * Example: Mean-field theory of the Ising model of magnetism. | ||
* Example: Mean-field theory of the XY model of magnetism. | * Example: Mean-field theory of the XY model of magnetism. | ||
* Example: Mean-field theory of the Hubbard model. | |||
* Landau phenomenological formulation of mean-field theories. | * Landau phenomenological formulation of mean-field theories. | ||
* Landau-Ginzburg mean-field theory and the Ginzburg criterion for the importance of fluctuations. | * Landau-Ginzburg mean-field theory and the Ginzburg criterion for the importance of fluctuations. | ||
===Additional references=== | ===Additional references=== | ||
* | * M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S. Novoselov, ''Magnetic 2D materials and heterostructures'', Nat. Nanotech. '''14''', 408 (2019). [https://www.nature.com/articles/s41565-019-0438-6 [PDF]] | ||
* T. Olsen, ''Theory and simulations of critical temperatures in CrI3 and other 2D materials: easy-axis magnetic order and easy-plane Kosterlitz-Thouless transitions'', MRS Commun. '''9''', 1142 (2019). [https://link.springer.com/article/10.1557%2Fmrc.2019.117 [PDF]] | |||
*A. Bedoya-Pinto ''et al.'', ''Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer'', Science '''374''', 616 (2021). [https://www.science.org/doi/10.1126/science.abd5146 [PDF]] | |||
*Y. Claveau, B. Arnaud, and S. Di Matteo, ''Mean-field solution of the Hubbard model: the magnetic phase diagram'', Eur. J. Phys. '''35''', 035023 (2014). [https://iopscience.iop.org/article/10.1088/0143-0807/35/3/035023/meta [PDF]] | |||
== Lecture 9: Renormalization group (RG)== | == Lecture 9: Renormalization group (RG) theory of phase transitions== | ||
* [[Media:rg_phys813.pdf|Tutorial on renormalization group applied to classical and quantum critical phenomena]] | * [[Media:rg_phys813.pdf|Tutorial on renormalization group applied to classical and quantum critical phenomena]] | ||
* Example: RG for 1D and 2D Ising model. | * Example: RG for 1D and 2D Ising model. | ||
Line 88: | Line 123: | ||
* M. E. Fisher, ''Renormalization group theory: Its basis and formulation in statistical physics'', Rev. Mod. Phys. '''70''', 653 (1998). [http://link.aps.org/doi/10.1103/RevModPhys.70.653 [PDF]] | * M. E. Fisher, ''Renormalization group theory: Its basis and formulation in statistical physics'', Rev. Mod. Phys. '''70''', 653 (1998). [http://link.aps.org/doi/10.1103/RevModPhys.70.653 [PDF]] | ||
* S. Sachdev and B. Keimer, ''Quantum criticality'', Physics Today '''64(2)''', 29 (2011). [http://dx.doi.org/10.1063/1.3554314 [PDF]] | * S. Sachdev and B. Keimer, ''Quantum criticality'', Physics Today '''64(2)''', 29 (2011). [http://dx.doi.org/10.1063/1.3554314 [PDF]] | ||
*[https://www.quantamagazine.org/how-renormalization-saved-particle-physics-20200917/ How mathematical ‘hocus-pocus’ saved particle physics] (popular and historical account of renormalization as perhaps the single most important advance in theoretical physics in 50 years). | |||
== Lecture 10: Elements of nonequilibrium statistical physics: Boltzmann equation and Kubo formula == | == Lecture 10: Elements of nonequilibrium statistical physics: Boltzmann equation and Kubo formula == | ||
* [[Media:boltzmann_kubo.pdf|Elements of nonequilibrium statistical physics: Boltzmann equation and Kubo formula]] | * [[Media:boltzmann_kubo.pdf|Elements of nonequilibrium statistical physics: Boltzmann equation and Kubo formula]] | ||
===Additional references=== | |||
* L. Szunyogh, Kubo formula for electronic transport [[Media:SZUNYOGH=theory_of_electronic_transport.pdf|[PDF]]] | |||
== Lecture 11: Elements of nonequilibrium statistical physics: Master equations for open quantum | == Lecture 11: Elements of nonequilibrium statistical physics: Master equations for density operator of open quantum system == | ||
* Example: Bloch equation describing | * Example: Bloch equation describing thermal relaxation and decoherence of spin-1/2. | ||
* Example: Decoherence in quantum Brownian motion. | * Example: Decoherence in quantum Brownian motion. | ||
=== Additional references === | === Additional references === | ||
* J. K. Gamble and J. F. Lindner, ''Demystifying decoherence and the master equation of quantum Brownian motion'', Am. J. Phys. '''77''', 244 (2009). [http://dx.doi.org/10.1119/1.3043847 [PDF]] | * J. K. Gamble and J. F. Lindner, ''Demystifying decoherence and the master equation of quantum Brownian motion'', Am. J. Phys. '''77''', 244 (2009). [http://dx.doi.org/10.1119/1.3043847 [PDF]] | ||
* D. A. Lidar, ''Lecture notes on the theory of open quantum systems'', [https://arxiv.org/abs/1902.00967 arXiv:1902.00967]. |
Latest revision as of 12:22, 18 February 2025
Lecture 1: Failure of classical statistical mechanics on black-body radiation problem
Additional references
- Matter-radiation decoupling and the cosmic microwave background
- C. Andersen, C. A. Rosenstroem, and O. Ruchayskiy, How bright was the Big Bang?, Am. J. Phys. 87, 395 (2019). [PDF]
Lecture 2: Density operator formalism for proper and improper mixed quantum states
- Example: Proper mixtures in spintronics.
- Example: Entangled quantum states, improper mixtures, and decoherence in nanostructures and quantum computers.
- Example: The von Neumann entropy as a measure of state purity.
- Example: Proper mixtures for quantum systems in thermal equilibrium and density operator for microcanonical, canonical, and grand canonical ensembles via correspondence with classical statistical mechanics.
- Example: Density matrix and quantum partition function for a single particle in a box in canonical ensemble.
- Example: Density matrix and quantum partition function for a linear harmonic oscillator in canonical ensemble.
Postulates of Quantum Mechanics in a Nutshell
1. Where things happen: HILBERT SPACE 2. Combining Quantum Systems: TENSOR PRODUCT OF VECTORS, MATRICES AND OF HILBERT SPACES 3. Time Evolution (Dynamics): SCHRÖDINGER EQUATION 4. Information extraction: MEASUREMENTS
Additional references
- Overview of linear algebra, using Dirac notation, for quantum (mechanics, computing and statistical mechanics) courses
- Mathematical Prerequsites from L. E. Ballentine, Quantum Mechanics: A Modern Development (World Scientific, Singapore, 2014).
- S. Weinberg, Quantum mechanics without state vectors, Phys. Rev. A 90, 042102 (2014). [PDF]
- A. Ekert and P. L. Knight, Entangled quantum systems and the Schmidt decomposition, Am. J. Phys. 63, 415 (1995). [PDF]
- J. Kincaida, K. McLelland, and M. Zwolak, Measurement-induced decoherence and information in double-slit interference, Am. J. Phys. 84, 522 (2016). [PDF]
- W. H. Zurek, Decoherence and the transition from quantum to classical revisited, arXiv:quant-ph/0306072 (2003). [PDF]
Lecture 3: Many-particle wave function and the Hilbert space of identical particles
- Example: Wave functions of 3 fermions and 3 bosons.
- Example: Ortho vs. para hydrogen H2 molecules.
Additional references
- C. F. Roos, A. Alberti, D. Meschede, P. Hauke, and H. Häffner, Revealing quantum statistics with a pair of distant atoms, Phys. Rev. Lett. 119, 160401 (2017). [PDF]
- N. Vaytet, K. Tomida, and G. Chabrier, On the role of the H2 ortho:para ratio in gravitational collapse during star formation, Astronomy & Astrophysics 563, A85 (2014). [PDF]
Lecture 4: Quantum partition function for noninteracting many-particle systems
- Example: Quantum partition function for two bosons and two fermions and comparison with classical statistical mechanics.
- Example: "Effective force" between noninteracting bosons and fermions due to Pauli principle.
- Example: Quantum partition function for noninteracting bosons and fermions in the grand canonical ensemble.
- Example: Equation of state for non-degenerate bosons and fermions.
Additional references
- W. J. Mullin and G. Blaylock, Quantum statistics: Is there an effective fermion repulsion or boson attraction?, Am. J. Phys. 71, 1223 (2003). [PDF]
- G. Cook and R. H. Dickerson, Understanding the chemical potential, Am. J. Phys. 63, 737 (1995). [PDF]
Lecture 5: Degenerate fermions
- Example: Heat capacity of electrons in solids.
- Example: Pauli paramagnetism.
- Example: Landau diamagnetism.
- Example: Stoner ferromagnetism.
- Example: White dwarfs, neutron and quark stars and black holes.
Additional references
- Stelar evolution: The life and death of stars
- How Earth will fare when the Sun dies
- R. Balian and J.-P. Blaizot, Stars and statistical physics: A teaching experience, Am. J. Phys. 67, 1189 (1999). [PDF]
- R. Fantoni, White-dwarf equation of state and structure: the effect of temperature, J. Stat. Mech. 113101 (2017). [PDF]
- Fermi writes to Dirac about "their" distribution function and his own paper from 1926.
Lecture 6: Degenerate bosons
- Example: Bose-Einstein Condensation of free noninteracting bosons.
- Example: Bose-Einstein condensation in ultracold atomic gases.
- Off-diagonal long-range order in the density matrix of Bose-Einstein condensates.
- Example: Heat capacity of phonons in solids.
Additional references
- G. Scharf, On Bose–Einstein condensation, Am. J. Phys. 61, 843 (1993). [PDF]
- W. J. Mullin, The loop-gas approach to Bose–Einstein condensation for trapped particles, Am. J. Phys. 68, 120 (2000). [PDF]
- K. Burnett, M. Edwards, and C. W. Clark, The theory of Bose-Einstein condensation of diluted gases, Phys. Today 52(12), 37 (1999). [PDF]
- E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74, 875 (2002). [PDF]
Lecture 7: Phase transitions
- Thermodynamics of magnetism.
- Exchange interaction.
- Quantum and classical Heisenberg or Ising ferro- and anti-ferromagnetic models.
- Example: Abrupt vs. continuous phase transitions in ferromagnet-paramagnet systems and analogy with liquid-gas phase diagram.
- Example: Phase transitions in quantum fluids, quantum chromodynamics and cosmology.
- Example: Monte Carlo simulations of the Ising model in two-dimensions.
Additional references
- O. Narayan and A. P. Young, Free energies in the presence of electric and magnetic fields, Am. J. Phys. 73, 293 (2005). [PDF]
- A. Mazumdar and G. White, Review of cosmic phase transitions: their significance and experimental signatures, Rep. Prog. Phys. 82, 076901 (2019). [PDF]
- D. Vollhardt and P. Wölfle, Superfluid Helium 3: Link between condensed matter physics and particle physics, arXiv:cond-mat/0012052.
- M. J. Aschwanden et al., 25 years of self-organized criticality: Solar and astrophysics, Space Sci. Rev. 198, 47 (2016). [PDF]
- A. Scheie, P. Laurell, A. M. Samarakoon, B. Lake, S. E. Nagler, G. E. Granroth, S. Okamoto, G. Alvarez, and D. A. Tennant, Witnessing entanglement in quantum magnets using neutron scattering, Phys. Rev. B 103, 224434 (2021). [PDF]
Lecture 8: Mean-field theory of phase transitions
- Example: Mean-field theory of the Ising model of magnetism.
- Example: Mean-field theory of the XY model of magnetism.
- Example: Mean-field theory of the Hubbard model.
- Landau phenomenological formulation of mean-field theories.
- Landau-Ginzburg mean-field theory and the Ginzburg criterion for the importance of fluctuations.
Additional references
- M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S. Novoselov, Magnetic 2D materials and heterostructures, Nat. Nanotech. 14, 408 (2019). [PDF]
- T. Olsen, Theory and simulations of critical temperatures in CrI3 and other 2D materials: easy-axis magnetic order and easy-plane Kosterlitz-Thouless transitions, MRS Commun. 9, 1142 (2019). [PDF]
- A. Bedoya-Pinto et al., Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer, Science 374, 616 (2021). [PDF]
- Y. Claveau, B. Arnaud, and S. Di Matteo, Mean-field solution of the Hubbard model: the magnetic phase diagram, Eur. J. Phys. 35, 035023 (2014). [PDF]
Lecture 9: Renormalization group (RG) theory of phase transitions
- Tutorial on renormalization group applied to classical and quantum critical phenomena
- Example: RG for 1D and 2D Ising model.
- Example: RG for quantum phase transition in 1D quantum Ising model in transverse magnetic field.
- Example: Numerical RG for 2D Ising model.
Additional references
- K. G. Wilson, Problems in physics with many scales of length, Scientific American 241(2), 140 (1979). [PDF]
- H. J. Maris and L. P. Kadanoff, Teaching the renormalization group, Am. J. Phys. 46, 652 (1978). [PDF]
- M. E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70, 653 (1998). [PDF]
- S. Sachdev and B. Keimer, Quantum criticality, Physics Today 64(2), 29 (2011). [PDF]
- How mathematical ‘hocus-pocus’ saved particle physics (popular and historical account of renormalization as perhaps the single most important advance in theoretical physics in 50 years).
Lecture 10: Elements of nonequilibrium statistical physics: Boltzmann equation and Kubo formula
Additional references
- L. Szunyogh, Kubo formula for electronic transport [PDF]
Lecture 11: Elements of nonequilibrium statistical physics: Master equations for density operator of open quantum system
- Example: Bloch equation describing thermal relaxation and decoherence of spin-1/2.
- Example: Decoherence in quantum Brownian motion.
Additional references
- J. K. Gamble and J. F. Lindner, Demystifying decoherence and the master equation of quantum Brownian motion, Am. J. Phys. 77, 244 (2009). [PDF]
- D. A. Lidar, Lecture notes on the theory of open quantum systems, arXiv:1902.00967.