Lectures: Difference between revisions

From phys660
Jump to navigationJump to search
 
(37 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Lecture 1: Computation as a tool for discovery in physics ==
== Lecture 1: Computation as a tool for discovery in physics ==
*[[Media:computational_tools.pdf|PDF]]
*[[Media:computational_tools.pdf|PDF]]
*[http://www-e.uni-magdeburg.de/mertens/publications/cise.pdf Computational complexity for physicists]
*[[Real numbers and numerical precision]]
*[[Real numbers and numerical precision]]
*[http://www-e.uni-magdeburg.de/mertens/publications/cise.pdf Computational complexity for physicists]


== Lecture 2: Numerical methods for ordinary differential equations ==
== Lecture 2: Numerical methods for ordinary differential equations ==
*PDF
*[[Media:numerical_ODE.pdf|PDF]]
*C. Moler, [http://www.mathworks.com/moler/chapters.html Numerical Computing with Matlab] (SIAM, Philadelphia, 2004).
*Example for stiff behavior of ODE: [[Media:stiff.m|stiff.m]] (flame propagation).
*W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery: [http://www.nr.com/ Numerical Recipes: The Art of Scientific Computing] (CUP, Cambridge, 2007).
*[http://www.mathworks.com/moler/odes.pdf Chapter 7] in C. Moler, [http://www.mathworks.com/moler/chapters.html Numerical Computing with Matlab] (SIAM, Philadelphia, 2004).
*[http://www.nrbook.com/a/bookfpdf.php Chapter 16] in W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery: [http://www.nr.com/ Numerical Recipes: The Art of Scientific Computing] (CUP, Cambridge, 2007).


== Lecture 3: Introduction to deterministic chaos ==
== Lecture 3: Introduction to deterministic chaos ==
*PDF
*[[Media:deterministic_chaos.pdf|PDF]]
*D. Gonze, [http://homepages.ulb.ac.be/~dgonze/TEACHING/autocorrel.pdf Autocorrelation function].
*T. Tél and M. Gruiz, [http://chaoticdynamics.net/ Chaotic Dynamics] (CUP, Cambridge, 2006).
*T. Tél and M. Gruiz, [http://chaoticdynamics.net/ Chaotic Dynamics] (CUP, Cambridge, 2006).


== Lecture 5: Vibrational eigenmodes: From glasses to Fermi-Pasta-Ulam Problem ==
== Lecture 4: Vibrational normal modes: From glasses to Fermi-Pasta-Ulam problem ==
*PDF
*[[Media:vibrations_glasses.pdf|PDF]]
 
===Vibrational normal modes in disordered one-dimensional systems===
 
* P. B. Allen and J. Kelner, ''Evolution of a vibrational wave packet on a disordered chain'', Am. J. Phys. '''66''', 497 (1998). [http://math.mit.edu/~kelner/Publications/Docs/KAAJP.pdf [PDF]]
 
* J. Fabian, ''Decay of localized vibrational states in glasses: A one-dimensional example'', Phys. Rev. B '''55''', R3328 (1997). [http://link.aps.org/doi/10.1103/PhysRevB.55.R3328 [PDF]]


== Lecture 6: Introduction to Fourier analysis ==
===50th Anniversary of the Fermi-Pasta-Ulam Problem===
*PDF


== Lecture 7: Random Numbers, Random Walks, Monte Carlo, and all that ==
*Focus issue of "Chaos": [http://chaos.aip.org/resource/1/chaoeh/v15/i1?&section=focus-issue-the-fermi-pasta-ulam-problem-the-first-50-years&page=1 THE "FERMI-PASTA-ULAM" PROBLEM-THE FIRST 50 YEARS].
*PDF
*S. Flach, M. V. Ivanchenko, O. I. Kanakov, and K. G. Mishagin, ''Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem'', Am. J. Phys. '''76''', 453 (2008). [http://dx.doi.org/10.1119/1.2820396 [PDF]].
*[http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations Fermi-Pasta-Ulam nonlinear lattice oscillations], T. Dauxois and S. Ruffo (2008), Scholarpedia, 3(8):5538.


== Lecture 8: Monte Carlo Simulations in Statistical Physics ==
== Lecture 5: Monte Carlo Simulations in Statistical Physics ==
*[[Media:monte_carlo_statphys.pdf|PDF]]


== Lecture 9: Computational Methods for Quantum Mechanics ==
== Lecture 6: Numerical algorithms for time-dependent Schrödinger equation ==
*[[Media:quantum_numerics.pdf|PDF]]


== Lecture 10: Interdisciplinary Topics in Complex Systems ==
== Lecture 7: Interdisciplinary Topics in Complex Systems ==
*[[Media:complexity.pdf|PDF]]

Latest revision as of 22:23, 22 April 2014

Lecture 1: Computation as a tool for discovery in physics

Lecture 2: Numerical methods for ordinary differential equations

Lecture 3: Introduction to deterministic chaos

Lecture 4: Vibrational normal modes: From glasses to Fermi-Pasta-Ulam problem

Vibrational normal modes in disordered one-dimensional systems

  • P. B. Allen and J. Kelner, Evolution of a vibrational wave packet on a disordered chain, Am. J. Phys. 66, 497 (1998). [PDF]
  • J. Fabian, Decay of localized vibrational states in glasses: A one-dimensional example, Phys. Rev. B 55, R3328 (1997). [PDF]

50th Anniversary of the Fermi-Pasta-Ulam Problem

Lecture 5: Monte Carlo Simulations in Statistical Physics

Lecture 6: Numerical algorithms for time-dependent Schrödinger equation

Lecture 7: Interdisciplinary Topics in Complex Systems